
Extended version of paper presented at ICAART 2013

Instrumentalization of Norm-Regulated
Transition System Situations

Magnus Hjelmblom1,2

1 Faculty of Engineering and Sustainable Development, University of Gävle, Sweden
mbm@hig.se

2 Department of Computer and Systems Sciences, Stockholm University, Sweden

Abstract. An approach to normative systems in the context of multi-
agent systems (MAS) modeled as transition systems, in which actions
are associated with transitions between different system states, is pre-
sented. The approach is based on relating the permission or prohibition
of actions to the permission or prohibition of different types of state tran-
sitions with respect to some condition d on a number of agents x1, ..., xν
in a state. It introduces the notion of a norm-regulated transition sys-
tem situation, which is intended to represent a single step in the run of
a (norm-regulated) transition system. The normative framework uses an
algebraic representation of conditional norms and is based on a system-
atic exploration of the possible types of state transitions with respect to
d(x1, ..., xν). A general-level Java/Prolog framework for norm-regulated
transition system situations has been developed, and this implementa-
tion together with a simple example system is presented and discussed.
Keywords: transition system, multi-agent system, norm-regulated, norm-
governed, normative system.

c© Springer-Verlag Berlin Heidelberg 2014
J. Filipe and A. Fred (Eds.): ICAART 2013, CCIS 449, pp. 8094, 2014.
DOI: 10.1007/978-3-662-44440-5 5



2 Magnus Hjelmblom



Instrumentalization of Norm-Regulated Transition System Situations 1

1 Introduction

Many dynamic systems, including multi-agent systems (MAS), may be modeled
as transition systems, in which the actions of an agent are associated with tran-
sitions between different states of the system. There is a number of different
approaches to normative systems in this context. The permission or prohibition
of a specific action in a transition system is naturally connected to permissible
or prohibited transitions between states of the system, and norms (sometimes
referred to as ‘social laws’) may then be formulated as restrictions on states and
state transitions.

This paper will introduce the notion of a norm-regulated transition system
situation, which is intended to represent a single step in the run of a (norm-
regulated) transition system. The permission or prohibition of actions in this
framework is related to the permission or prohibition of different types of state
transitions with respect to some condition d on a number of agents x1, ..., xν in
a state. The framework uses an algebraic representation of conditional norms,
based on the representation used in the norm-regulated Dalmas architecture
(see Previous Work, Sect. 1.2). The novel feature presented here is primarily
an extension to the Dalmas’s normative framework, based on a systematic ex-
ploration of the possible types of state transitions with respect to d(x1, ..., xν).
A norm-regulated transition system situation is easily instrumentalized into a
general-level Prolog module that can be used to implement a wide range of
specific norm-regulated dynamic systems.

Important norm-related issues such as enforcement of norms, norm change
and consistency of normative systems are beyond the scope of this paper; how-
ever, the approach presented here is general in nature, and may be combined
with many different approaches to, e.g., norm enforcement. The term ‘agent’
will be frequently used for some sort of ‘acting entity’ within a dynamic system,
but no special assumptions are made about for example autonomy, reasoning
capability, architecture, and so on.

1.1 Transition System Situations

A labelled transition system (LTS) is usually defined (see for example [4, p.
174]) as an ordered 3-tuple 〈S,E,R〉 where S is a non-empty set of states;
E is a set of transition labels, often called events; and R ⊆ S × E × S is a
non-empty set of labelled transitions. If (s, ε, s′) is a transition, s is the initial
state and s′ is the resulting state of ε. An event ε is executable in a state s if
there is a transition (s, ε, s′) ∈ R, and non-deterministic if there are transitions
(s, ε, s′) ∈ R and (s, ε, s∗) ∈ R with s′ 6= s∗. A path (or run) of length m (m ≥ 0)
of a labelled transition system is a sequence s0ε0s1 · · · sm−1εm−1sm such that,
for i ∈ {1, ..,m}, (si−1, εi−1, si) ∈ R.

In the following, we restrict our attention to transition systems in which all
events are deterministic. This means that, for each state s, the labels associated
with the outgoing transitions from s are distinct. Furthermore, we assume that
a ν-ary condition d is true or false on ν agents x1, ..., xν ∈ Ω in s, where Ω



2 Magnus Hjelmblom

Fig. 1. A state diagram for a transition system situation with three events.

is a set of agents associated with s; this will be written d(x1, ..., xν ; s). In the
special case when the sequence of agents is empty, i.e. ν = 0, d represents a
proposition which is true or false in s. Let us now focus on an arbitrary state in
a deterministic LTS, with the added requirement that each event ε represents an
action a performed by a single agent x. This is written ε = x:a, referring to both
to the moving agent x and an action a. The term transition system situation will
be used for an ordered 5-tuple S = 〈x, s,A,Ω, S〉 characterized by a set of states
S, a state s, an agent-set Ω = {x1, ..., xn}, the acting (‘moving’) agent x, and
an action-set A = {a1, ..., am}. In this setting, a may be regarded as a function
such that a(x, s) = s+ means that s+ is the resulting state when x performs act
a in state s.3 In the following, the abbreviation s+ will be used for a(x, s) when
there is no need for an explicit reference to the action a and the acting agent x.

As indicated by Fig. 1, a transition system situation is intended to represent,
for example, a ‘snapshot’ of a labelled transition system in which each transi-
tion is deterministic and represents the action of a single agent. In this case,
s represents an arbitrarily chosen state in the LTS, and S is the set of states
reachable from s by all transitions x:a, a ∈ A. At the same time, a transition
system situation is designed to be general enough to also represent a step in
a run of other kinds of dynamic systems, including systems modeled by finite
automata (see for example [11]) or Petri nets, and deterministic Dalmases.

1.2 Related Work

This section will give a brief overview of different approaches to the design of
normative systems and the formulation of norms. A common feature of many
approaches is the idea to partition states and (possibly) transitions into two cat-
egories, for example ‘permitted’ and ‘non-permitted’. This may be accomplished

3 Note that no special assumptions are made regarding whether or not s0 is an element
of S, i.e. whether or not the action a may lead back to s0.



Instrumentalization of Norm-Regulated Transition System Situations 3

with the use of if-then-else rules or constraints on the states and/or the transi-
tions between states. The Ballroom system in [5] and the anticipatory system
for plot development guidance in [11] both serve as examples of this approach.
Some approaches are purely algebraic or based on modal logics, for example
temporal or deontic logic. The Dalmas architecture (see Previous Work below)
for norm-regulated MAS is based on an algebraic approach to the representa-
tion of normative systems. Dynamic deontic logic [20] and Dynamic logic of
permission [19] are two well-known examples of the modal logic approach. Other
examples are the combination of temporalised agency and temporalised norma-
tive positions [6], in the setting of Defeasible Logic, and Input/Output Logic
by Makinson and van der Torre (see for example [18]). Vázquez-Salceda et al.
use a language consisting of deontic concepts which can be conditional and can
include temporal operators. They characterize norms by whether they refer to
states (i.e., norms concerning that an agent sees to it that some condition holds)
or actions (i.e., norms concerning an agent performing a specific action), whether
they are conditional, whether they include a deadline, or whether they are norms
concerning other norms. [26] nC+, an extension of the action language C+, is
employed within the context of ‘coloured agent-stranded transition systems’ [4]
to formulate two kinds of norms: state permission laws and action permission
laws. A state permission law states that certain (types of) states are permis-
sible or prohibited, while an action permission law states that specific (types
of) transitions are permissible or prohibited in certain states. By picking out
the component (‘strand’) corresponding to an individual agent’s contribution to
an event, different categories of non-compliant behaviour (‘sub-standard’ resp.
‘unavoidably non-compliant’ behaviour) can be distinguished. Cliffe et al. use
Answer Set Programming (ASP) for representing institutional norms, as part of
the representation and analysis of specifications of agent-based institutions. [1,
2] In Deontic Petri nets, and variants thereof such as Organizational Petri nets,
varying degrees of ‘ideal’ or ‘sub-ideal’ (more or less ‘allowed’ or ‘preferred’) be-
haviour is modeled by preference orderings on executions of Petri nets; see for
example [23, 3].

Previous Work: The Dalmas Architecture Dalmas [22] is an abstract
architecture for a class of (norm-regulated) multi-agent systems. A deterministic
Dalmas is a simple multi-agent system in which the actions of an agent are
connected to transitions between system states. In a deterministic Dalmas the
agents take turns to act; only one agent at a time may perform an action.
Therefore, each individual step in a run of the system may be represented by a
transition system situation.

A Dalmas is formally described by an ordered 9-tuple, where the arguments
are various sets, operators and functions which give the specific Dalmas its
unique features. Of particular interest is the deontic structure-operator, which
for each situation of the system determines an agent’s deontic structure (i.e.,
the set of permissible acts) on the feasible acts in the current situation, and the
preference structure-operator, which for each situation determines the preference



4 Magnus Hjelmblom

structure on the permissible acts. In a norm-regulated simple deterministic Dal-
mas, the deontic structure consists of all acts that are not explicitly prohibited
by a normative system; thereby employing what is often referred to as ‘negative
permission’. The preference structure consists of the most preferable (accord-
ing to the agent’s utility function) of the acts in the deontic structure. In other
words, a Dalmas agent’s behaviour is regulated by the combination of a norma-
tive system and a utility function. The normative system consists of conditional
norms using the Kanger-Lindahl theory of normative positions, expressed in an
algebraic notation for norms. See for example [12, 14, 21] for an introduction. A
general-level Java/Prolog implementation of the Dalmas architecture has been
developed, to facilitate the implementation of specific systems. The Colour &
Form system, the Waste-collector system and the Forest Cleaner system
are three specific systems that have been implemented using this framework.
The reader is referred to [22, 7, 10, 8] for a description of these systems and their
implementations.

2 Normative Systems and Types of State Transitions

In this section, which is a slight reformulation of Sect. 2 in [9], we consider the
transition from a state s to a following state s+, and focus on the condition
d(x1, ..., xν). To facilitate reading, Xν will be used as an abbreviation for the
argument sequence x1, ..., xν . With regard to d(Xν), there are four possible al-
ternatives for the transition from s to s+, since in s as well as in s+, d(Xν) or
(d
¬

)(Xν) could hold4:

I. d(Xν ; s) and d(Xν ; s+)

II. ¬d(Xν ; s) and d(Xν ; s+)

III. d(Xν ; s) and ¬d(Xν ; s+)

IV. ¬d(Xν ; s) and ¬d(Xν ; s+)

Each alternative represents a basic type of transition with regard to the state of
affairs d(Xν); we say that {I, II, III, IV} is the set of basic transition types with
regard to d(Xν). In the vein of [24], I could be written 0:d(Xν) ∧ 1:d(Xν), II
could be written 0:¬d(Xν) ∧ 1:d(Xν), and similarly for III and IV.

Let the situation 〈x, s〉 be characterized by the moving agent x and the state
s in a transition system situation S. We now wish to be able to determine the
transition type for the transition represented by action a performed by agent
xν+1 in 〈x, s〉. (The point of the separation between xν+1 and the moving agent
x is to allow for systems in which normative conditions may apply to other agents
than the ‘moving’ agent, e.g. agents wishing to perform some sort of ‘reaction’ or

4 We can form negations (d¬) of conditions in the following way: (d¬)(Xν) iff ¬d(Xν).
In the following, the latter notation will be used to facilitate the presentation. Note
that conjunctions (c ∧ d) and disjunctions (c ∨ d) may be formed in a similar way;
hence, it is possible to construct Boolean algebras of conditions.



Instrumentalization of Norm-Regulated Transition System Situations 5

‘punishment’ act. In most simple systems, however, xν+1 will be identified with
x.) Therefore, we define a ‘basic transition type operator’ Baj , j ∈ {I, II, III, IV},
such that the ν + 1-ary ‘transition type condition’ Baj d(Xν , xν+1;x, s) indicates
whether or not, in the situation 〈x, s〉, the event xν+1:a (representing a being
performed by xν+1) has basic transition type j with regard to d(Xν): For all
ν-ary conditions d and for all agents Xν , xν+1, all acts a and all situations 〈x, s〉,

1. BaI d(Xν , xν+1;x, s) iff [d(Xν ; s) ∧ d(Xν ; a(xν+1, s)]

2. BaIId(Xν , xν+1;x, s) iff [¬d(Xν ; s) ∧ d(Xν ; a(xν+1, s))]

3. BaIIId(Xν , xν+1;x, s) iff [d(Xν ; s) ∧ ¬d(Xν ; a(xν+1, s))]

4. BaIVd(Xν , xν+1;x, s) iff [¬d(Xν ; s) ∧ ¬d(Xν ; a(xν+1, s))]

We note in passing the following symmetries:

– BaI d(Xν , xν+1;x, s) iff BaIV(d¬)(Xν , xν+1;x, s)

– BaIId(Xν , xν+1;x, s) iff BaIII(d
¬)(Xν , xν+1;x, s)

2.1 Prohibition of State Transition Types

{I, II, III, IV} is the set of atoms of the boolean algebra generated by d(Xν ; s) and
d(Xν ; s+). This algebra has 16 elements, as shown in Table 1, where ‘X’ denotes
that a basic transition type is one of the disjuncts of the element, while ‘-’
denotes that it is not. I.e., each subset of {I, II, III, IV} represents a combination
(by disjunction) of basic transition types with regard to d(Xν). For each element
(i.e., for each row in the table) we obtain conditions on state transitions. E.g.,
row 5 represents the condition ¬d(Xν ; s) ∧ d(Xν ; s+), and row 8 represents the
condition

(¬d(Xν ; s) ∧ d(Xν ; s+)) ∨ (d(Xν ; s) ∧ ¬d(Xν ; s+)) ∨ (¬d(Xν ; s) ∧ ¬d(Xν ; s+))

which may be simplified to ¬d(Xν ; s) ∨ ¬d(Xν ; s+).
The idea now is to formulate (conditional) norms whose normative conse-

quents prohibit one or more basic transition types. A specific act a is taken to
be prohibited for xν+1 if, in a certain state s, the normative system contains
a norm which prohibits the type of transition represented by xν+1:a. For each
transition type condition, i.e. for each row in Table 1, we may now stipulate that
if the transition type condition holds of the transition (s, xν+1:a, a(xν+1, s)) then
it is not permissible for xν+1 to perform a in the situation 〈x, s〉. E.g., for row
5 we may stipulate that if ¬d(Xν ; s) and d(Xν ; a(xν+1, s)), then act a is not
permissible for xν+1 in 〈x, s〉, by defining a normative operator PII such that
for all ν-ary conditions d, all agents Xν , xν+1 ∈ Ω, all actions a ∈ A, and all
situations 〈x, s〉,

PIId(Xν , xν+1;x, s) iff
[if BaIId(Xν , xν+1;x, s), then a is prohibited for xν+1].



6 Magnus Hjelmblom

Table 1. Possible Combinations of Basic Transition Types.

(I) (II) (III) (IV)

1 - - - - -

2 - - - X ¬d(Xν ; s) ∧ ¬d(Xν ; s+)

3 - - X - d(Xν ; s) ∧ ¬d(Xν ; s+)

4 - - X X ¬d(Xν ; s+)

5 - X - - ¬d(Xν ; s) ∧ d(Xν ; s+)

6 - X - X ¬d(Xν ; s)

7 - X X - ¬(d(Xν ; s) ↔ d(Xν ; s+))

8 - X X X ¬d(Xν ; s) ∨ ¬d(Xν ; a(x, s))

9 X - - - d(Xν ; s) ∧ d(Xν ; s+)

10 X - - X d(Xν ; s) ↔ d(Xν ; s+)

11 X - X - d(Xν ; s)

12 X - X X d(Xν ; s) ∨ ¬d(Xν ; s+)

13 X X - - d(Xν ; s+)

14 X X - X ¬d(Xν ; s) ∨ d(Xν ; s+)

15 X X X - d(Xν ; s) ∨ d(Xν ; s+)

16 X X X X >

Similarly, for row 8 we may define PII,III,IV such that for all ν-ary conditions d,
all agents Xν , xν+1 ∈ Ω, all actions a ∈ A, and all situations 〈x, s〉,

PII,III,IVd(Xν , xν+1;x, s) iff
[if BaIId(Xν , xν+1;x, s) or BaIIId(Xν , xν+1;x, s) or BaIVd(Xν , xν+1;x, s),

then a is prohibited for xν+1].

A closer look at Table 1 reveals, however, that not all disjunctions of basic
transition types can be meaningfully linked with a prohibition. As discussed in
[9], norms based on the prohibition of elements containing I ∨ III or II ∨ IV are
not meaningful. Table 2 contains the rows (slightly reordered) that represent
meaningful normative conditions. It is convenient to define a ‘transition type
operator’ Caj , j ∈ {2, 2′, 4, 4′, 5, 6, 6′, 7}, for each of the rows in Table 2 (except

the first, which expresses no restrictions at all)5:
For all ν-ary conditions d and for all agents Xν , xν+1, all acts a and all

situations 〈x, s〉,

1. Ca2 d(Xν , xν+1;x, s) iff BaIIId(Xν , xν+1;x, s) iff [d(Xν ; s) ∧ ¬d(Xν ; a(xν+1, s)]

2. Ca2′d(Xν , xν+1;x, s) iffBaIVd(Xν , xν+1;x, s) iff [¬d(Xν ; s) ∧ ¬d(Xν ; a(xν+1, s))]

3. Ca4 d(Xν , xν+1;x, s) iffBaIId(Xν , xν+1;x, s) iff [¬d(Xν ; s) ∧ d(Xν ; a(xν+1, s))]

5 The numbering is based on the numbering used in [8].



Instrumentalization of Norm-Regulated Transition System Situations 7

4. Ca4′d(Xν , xν+1;x, s) iff BaI d(Xν , xν+1;x, s) iff [d(Xν ; s) ∧ d(Xν ; a(xν+1, s))]

5. Ca5 d(Xν , xν+1;x, s) iff [BaIIId(Xν , xν+1;x, s) or BaIVd(Xν , xν+1;x, s)] iff

¬d(Xν ; a(xν+1, s))

6. Ca6 d(Xν , xν+1;x, s) iff [BaIId(Xν , xν+1;x, s) or BaIIId(Xν , xν+1;x, s)] iff

[¬d(Xν ; s) ∧ d(Xν ; a(xν+1, s))] ∨ [d(Xν ; s) ∧ ¬d(Xν ; a(xν+1, s))]

7. Ca6′d(Xν , xν+1;x, s) iff [BaI d(Xν , xν+1;x, s) or BaIVd(Xν , xν+1;x, s)] iff

[d(Xν ; s) ∧ d(Xν ; a(xν+1, s))] ∨ [¬d(Xν ; s) ∧ ¬d(Xν ; a(xν+1, s))]

8. Ca7 d(Xν , xν+1;x, s) iff [BaI d(Xν , xν+1;x, s) or BaIId(Xν , xν+1;x, s)] iff

d(Xν ; a(xν+1, s))

The ‘transition type condition’ Caj d(Xν , xν+1;x, s) indicates whether or not, in
situation 〈x, s〉, the event xν+1:a has any of the corresponding basic transition
types with regard to d(Xν). The following symmetries hold (cf. the observation
in [22, p. 148]):

– Ca2 d(Xν , xν+1;x, s) iff Ca4 (d¬)(Xν , xν+1;x, s)

– Ca2′d(Xν , xν+1;x, s) iff Ca4′(d
¬)(Xν , xν+1;x, s)

– Ca5 d(Xν , xν+1;x, s) iff Ca7 (d¬)(Xν , xν+1;x, s)

– Ca6 d(Xν , xν+1;x, s) iff Ca6 (d¬)(Xν , xν+1;x, s)

– Ca6′d(Xν , xν+1;x, s) iff Ca6′(d
¬)(Xν , xν+1;x, s)

Next, we define a normative ‘transition type prohibition operator’ P1 such that
it imposes no restriction on the actions performed by xν+1, and, for each Caj ,
a transition type prohibition operator Pj , j ∈ {2, 2′, 4, 4′, 5, 6, 6′, 7}, such that
for all ν-ary conditions d, all agents Xν , xν+1 ∈ Ω, all actions a ∈ A, and all
situations 〈x, s〉,

Pjd(Xν , xν+1;x, s) iff [if Caj d(Xν , xν+1;x, s), then a is prohibited for xν+1].

Note for example that P5d(Xν , xν+1;x, s) iff PI,IVd(Xν , xν+1;x, s). From the
symmetry principles above it follows that

– P1d(Xν , xν+1; s) iff P1(d¬)(Xν , xν+1;x, s)

– P2d(Xν , xν+1; s) iff P4(d¬)(Xν , xν+1;x, s)

– P2′d(Xν , xν+1; s) iff P4′(d
¬)(Xν , xν+1;x, s)

– P5d(Xν , xν+1; s) iff P7(d¬)(Xν , xν+1;x, s)

– P6d(Xν , xν+1; s) iff P6(d¬)(Xν , xν+1;x, s)

– P6′d(Xν , xν+1; s) iff P6′(d
¬)(Xν , xν+1;x, s)

Now suppose that Pjd(Xν , xν+1;x, s) holds (is ‘in effect’) in situation 〈x, s〉,
and that the corresponding transition type condition Caj d(Xν , xν+1;x, s) also
holds for some action a and some agent xν+1. Then a is prohibited for xν+1: For
all actions a ∈ A and all agents xν+1 ∈ Ω,

Prohibitedx,s(xν+1, a) if there exists a condition d,
a sequence of agents x1, ..., xν , and a j ∈ {2, 2′, 4, 4′, 5, 6, 6′, 7}, such that

Pjd(x1, ..., xν , xν+1;x, s) & Caj d(x1, ..., xν , xν+1;x, s).



8 Magnus Hjelmblom

Table 2. Meaningful Combinations of Prohibited State Transition Types.

(I) (II) (III) (IV) Caj d(Xν , xν+1;x, s)

- - - - -

- - X - d(Xν ; s) ∧ ¬d(Xν ; a(xν+1, s))

- - - X ¬d(Xν ; s) ∧ ¬d(Xν ; a(xν+1, s))

- X - - ¬d(Xν ; s) ∧ d(Xν ; a(xν+1, s))

X - - - d(Xν ; s) ∧ d(Xν ; a(xν+1, s))

- - X X ¬d(Xν ; a(xν+1, s))

- X X - ¬(d(Xν ; s) ↔ d(Xν ; a(xν+1, s)))

X - - X d(Xν ; s) ↔ d(Xν ; a(xν+1, s))

X X - - d(Xν ; a(xν+1, s))

2.2 Norm-Regulated Transition System Situations

A norm-regulated transition system situation is represented by an ordered pair
〈S,N〉 where S = 〈x, s,A,Ω, S〉 is a transition system situation and N is a
normative system. We assume that (1) an event ε is of the form xν+1:a (i.e.,
represents an action a performed by an agent xν+1; see Sect. 1.1) and (2) that
norms apply to an individual agent xν+1 in a state s. A norm in N is represented
by an ordered pair 〈G,C〉, where the condition G on a situation 〈x, s〉 is the
ground of the norm and the (normative) condition C on 〈x, s〉 is its consequence.
(See, e.g., [22]) For example, 〈g, Pjc〉 represents the sentence

∀x1, x2, ..., xν , xν+1 ∈ Ω : g(x1, x2, ..., xp, xν+1;x, s)→
Pjc(x1, x2, ..., xq, xν+1;x, s)

where Ω is the set of agents, xν+1 is the agent to which the norm applies, x is
the ‘moving’ agent in the situation 〈x, s〉, and ν = max(p, q). If the condition
specified by the ground of a norm is true in some situation, then the (normative)
consequence of the norm is in effect in that situation. To ensure that the agent
xν+1 to which the norm applies is the same as the moving agent x, we apply
the ‘move operator’ Mi. This operator transforms a condition d on p agents in
a state s to a condition Mid on p + 1 agents in the situation 〈x, s〉, while at
the same time identifying xν+1 with x. (See [22, 7] for an explanation of the
operator Mi.) If the normative system contains a norm whose ground holds in
the the situation 〈x, s〉 and whose consequence prohibits the type of transition
represented by the event xν+1:a, then action a is prohibited for xν+1 in 〈x, s〉:

Prohibitedx,s(xν+1, a) according to N
if there exists a condition d and a condition c and a j ∈ {2, 2′, 4, 4′, 5, 6, 6′, 7}

such that 〈Mid, Pjc〉 is a norm in N , and there exist x1, ..., xν such that
Mid(x1, ..., xp, xν+1;x, s) & Caj c(x1, ..., xq, xν+1;x, s), where ν = max(p, q).

Since each situation for a Dalmas can be viewed as a transition system situa-
tion, it is straightforward to develop the Dalmas architecture (see Sect. 1.2) into



Instrumentalization of Norm-Regulated Transition System Situations 9

an architecture for norm-regulated transition system situations. This means ex-
tending the set of seven type-operators Ti with corresponding Eai operators into
a set of nine type-operators Pi with corresponding Cai operators, which calls for
the definition of a structure similar to an np-cis6. The details are left for future
work. The existing general-level Java/Prolog Dalmas implementation is easily
adapted into a general-level implementation of norm-regulated transition system
situations. In this framework, a norm is represented by a Prolog term n/3 of the
form n(Id/N,OpG*G,OpC*C), where Id is an identifier of a norm-system and N is
an identifier of an individual norm. OpG*G is a compound term representing an
operator OpG applied to (the functor of) a state condition predicate G, forming
the norm’s ground. Similarly, OpC*C represents the norm’s consequence.

2.3 Applications

The existing implementation of the Colour & FormDalmas (see Sect. 1.2) has
been adapted to serve as a demonstration of the use of norm-regulated transition
system situations. The Waste-collector Dalmas and the Forest Cleaner
Dalmas implementations may be adapted in a similar manner. However, the
use of norm-regulated transition system situations is not limited to the Dalmas
context. Many kinds of dynamic systems (including different types of transition
systems and multi-agent systems) in which state transitions are connected to
the actions of a single ‘moving’ agent, could be modelled and implemented by
(iterated) use of a norm-regulated transition system situation. One example is
the Rooms system, an implementation of (a variant of) the Rooms example
by Craven and Sergot in [4, p. 178ff]. The example consists of a world in which
agents of two categories (‘male’ and ‘female’) move around in a world of rooms
that can contain any number of agents. Some rooms are connected by doorways
(each connecting two rooms) through which the agents can pass7, but only one
agent at a time. The behaviour of the agents is regulated by a normative system
stating that a female agent may not be alone in a room with a male agent.
The restriction that only one agent at a time may move through a doorway is
represented by the restriction that an event ε represents an action performed by a
single agent x. To add some dynamics to the system, the behaviour of the agents
is further governed by a simple utility function such that left �f stay �f right
and right �m stay �m left, where � is the relation ‘better than’ and f and
m stands for ‘female’ and ‘male’, respectively. Fig. 2 shows both a text-based
and a graphical view of the initial state of the system, and the set of permissible
acts for the acting agent f1. The normative system contains the single norm
〈M0opposite sex, P7alone〉, which states that an agent may not act so that a
pair of agents 〈xi, xj〉 such that xi and xj have opposite sex, end up alone in

6 Normative-position condition-implication structure; see, e.g., [14, 22].
7 More precisely, the agents may choose between three acts: left, stay or right, but
left and right are only feasible if there is a doorway in the corresponding direction.
Note that the specific example in [4, p. 178ff] has one female and two male agents
and two rooms, while the Rooms system has three rooms.



10 Magnus Hjelmblom

Fig. 2. Screenshot: Initial situation of a Rooms system execution

the same room. This includes moving to a room containing a single agent of the
opposite sex as well as leaving two other agents of opposite sex alone in the same
room. We see that of the two feasible acts stay and left in the current situation,
only stay is permissible according to the normative system, since if f1 moves left
she ends up alone with m2.

The source code for the Colour and Form system and the Rooms system,
as well as for the general-level Java/Prolog implementation of norm-regulated
transition system situations is available for download8 and is publicly and freely
disseminated. The example systems are quite simple, but nicely illustrate some
features of iterated use of norm-regulated transition system situations, e.g. the
ability to investigate the interplay between a normative system that determines
the scope of permissible actions for agents and utility functions that represent the
preferences of the agents. They demonstrate that the general-level Java/Prolog
implementation can be used as a tool for the implementation of such systems.
The framework includes a Prolog logic server as a backend and (if desired) a
Java user interface as frontend, functioning as a lookup-service that answers
questions such as ‘is act a permissible for x in state s, according to normative
system N ’ or ‘which acts are permissible for x in state s, according to N ’. At the

8 http://drp.name/norms/nrtssit



Instrumentalization of Norm-Regulated Transition System Situations 11

system level, it could be used to maintain a normative system for some society,
in combination with some norm enforcement strategy. At the agent level, it could
be used as a common normative framework that is shared by individual agents
that take norms into account in their reasoning cycle, or as part of an agent’s
internal architecture, either to represent a model of society’s normative system
or to represent an agent’s ‘internal’ normative system (‘ethics’). Naturally, the
use of both Java and Prolog as implementation languages has both advantages
and disadvantages. The primary advantage is that this approach combines the
strengths of two different programming paradigms and languages. On the other
hand, it demands skills in both object-oriented and logic programming of the
developer wishing to use the framework to develop a specific system.

Remark 1. Regarding computational complexity, it can be noted that the frame-
work works well for the simple systems discussed here, but certainly has room
for various performance optimizations. Still, even with such optimizations made,
scaleability will remain a challenge for this framework as well as for most other
frameworks for norm-regulated multi-agent systems (see, e.g., [24, p. 52]), since
the time to test each norm is in the worst case roughly proportional to nν , where
n is the size of the agent set Ω, ν = max(p, q) and p and q is the arity of the
ground (resp. consequence) of the norm.9 One way to, at least partially, address
these issues is to explore the possibility to express a normative system in an
economic way by its set of ‘minimal norms’ (see for example [22, 17]).

3 Conclusion and Future Work

This paper has introduced the notion of a transition system situation, which is
intended to represent a single step in the run of many kinds of transition systems.
In a norm-regulated transition system situation, the permission or prohibition
of actions is related to the permission or prohibition of different types of state
transitions with respect to some condition d on a number of agents x1, . . . , xν
in a state. The framework uses a representation of conditional norms based
on the algebraic approach10 to normative systems used in [22] and a systematic
exploration of the possible types of state transitions with respect to d(x1, . . . , xν).

By adaption of the existing implementation of the Dalmas architecture, a
general-level Java/Prolog framework for norm-regulated transition system situa-
tions (together with some simple example systems) has been developed. The set
of eight transition type conditions Cai is an extension of the set of six Eai condi-
tions in [22]. These conditions were intended as an interpretation in the Dalmas
context of Lindahl’s set of one-agent types of normative positions. The (poten-
tial) connection between the combination of Pi and Cai and the Kanger-Lindahl

9 As noted in [21, p. 31], the computational complexity of any specific implementa-
tion may be more formally analysed through algorithmic analysis, e.g. average-case
analysis.

10 This approach was originally developed in a series of papers; see for example [13,
15–17].



12 Magnus Hjelmblom

theory of normative positions is interesting. It has been partly investigated in
[8], but deserves to be further explored.

Lindahl and Odelstad argue that a normative system should express “... gen-
eral rules where no individual names occur. If the task is to represent a normative
system this feature of generality has to be taken into account.” [17, p. 5] An ad-
vantage of their algebraic approach to normative systems, besides for example
efficient automation and mechanization (see, e.g., [25, p. 197] with references),
is in fact the expressive power it yields. The algebraic normative framework pre-
sented in this paper allows the construction of norms based on conditions on an
arbitrary number of agents, in contrast to for example Dynamic deontic logic
[20] and Dynamic logic of permission [19] which both have their roots in Propo-
sitional Dynamic Logic (PDL). Unlike in the agent-stranded coloured transition
systems [4, 24], the framework presented in this paper does not explicitly dis-
tinguish between state permission laws and action permission laws. It allows,
however, a state permission law to be represented implicitly as a special case,
by a norm which prohibits all transitions that lead to an undesired state. Our
framework treats all norms as action permission laws, in the sense that actions
are prohibited in different states as a consequence of certain transition types
being prohibited by the normative system. It allows the creation of norms that
forbid specific named actions in certain situations, by choosing a normative con-
sequence that forbids the agent to act so that it ends up in a state where the last
action performed was the prohibited action. This requires some sort of history
of actions to be part of the state of the system.

The idea to base norms on permissible and prohibited types of state transi-
tions has, to the author’s knowledge, not been systematically explored before. It
appears that the language for action permission laws used by Craven and Sergot
also allows the formulation of norms that prohibit certain types of transitions,
but an example of this feature is not given in [4]. In Dynamic deontic logic it
is only the state resulting from a transition that determines if the transition is
classified as ‘permitted/non-permitted’, while in Dynamic logic of permission,
it is executions of actions that are classified as ‘permitted/non-permitted’. van
der Meyden’s treatment of permission uses the process semantics for actions,
in which the denotation of an action expressions is a set of sequences of states.
This allows for the description of the states of affairs during the execution of an
action; the permission of an action is not dependent only on the state resulting
from the execution of the action, but also on the intermediate states.

The systematic treatment of the different types of transitions ensures that
the set of transition type operators Caj and the corresponding prohibition opera-
tors Pj exhaust the space of meaningful transition type prohibitions. Therefore,
norm-regulated transition system situations could be used in a given problem
domain to systematically search for the ‘best’ normative system for (a class of)
dynamic systems, according to some criteria for evaluation of the system’s per-
formance. For example, as suggested in [8], a genetic algorithm or some other
mechanism from machine learning could be employed to seek the optimal nor-
mative system for a particular task. This requires some mechanism for norm



Instrumentalization of Norm-Regulated Transition System Situations 13

change. In the current architecture, norms may be changed ‘from the outside’,
but not ‘from the inside’ as a consequence of an action by an agent in a state s,
since the normative system N is not itself considered a part of s. An interesting
line of future work is to explore the possibility to let the normative system be
a part of the state, thereby letting agents choose actions that modify the nor-
mative system. Norm change is another area in which the notion of ‘minimal
norms’ may be of special significance, as suggested in [17, Sect. 2.1.2 and 4.3].

The requirement that each event ε in a norm-regulated transition system
situation represents an action performed by a single agent deserves further at-
tention. It corresponds roughly to the restriction in the Rooms example (Sect.
2.3) that only one agent at a time can move through a doorway. This raises a
number of questions regarding the relationship between norm-regulated transi-
tion system situations and transition systems in which a single transition may
correspond to the simultaneous action of several agents, possibly including ‘ac-
tions’ by the environment itself. These issues deserve a deeper discussion, which
is left for future papers.

Another interesting issue is consistency. An inconsistent normative system
may lead to a situation in which the deontic structure is empty, i.e. all actions
are prohibited. How the system should behave in such a situation is heavily
dependent on the nature of the specific application at hand; this is not specified
by the general-level framework.

Acknowledgements

The author wishes to thank Jan Odelstad and Magnus Boman for valuable ideas
and suggestions, participants of ICAART 2013 for discussions in relation to this
paper and the organizers of the conference for the opportunity to expand my
conference paper.

References

1. Cliffe, O., De Vos, M., Padget, J.: Specifying and analysing agent-based social
institutions using answer set programming. In: Boissier, O., Padget, J., Dignum,
V., Lindemann, G., Matson, E., Ossowski, S., Sichman, J., Vázquez-Salceda, J.
(eds.) Coordination, Organizations, Institutions, and Norms in Multi-Agent Sys-
tems, Lecture Notes in Computer Science, vol. 3913, pp. 99–113. Springer Berlin
/ Heidelberg (2006), doi:10.1007/11775331 7

2. Cliffe, O., De Vos, M., Padget, J.: Answer set programming for representing and
reasoning about virtual institutions. In: Inoue, K., Satoh, K., Toni, F. (eds.) Com-
putational Logic in Multi-Agent Systems, Lecture Notes in Computer Science, vol.
4371, pp. 60–79. Springer Berlin / Heidelberg (2007), doi:10.1007/978-3-540-69619-
3 4

3. Combettes, S., Hanachi, C., Sibertin-Blanc, C.: Organizational petri nets for proto-
col design and enactment. In: Proceedings of the fifth international joint conference
on Autonomous agents and multiagent systems. pp. 1384–1386. AAMAS ’06, ACM,
New York, NY, USA (2006), doi:10.1145/1160633.1160892



14 Magnus Hjelmblom

4. Craven, R., Sergot, M.: Agent strands in the action language nC+. Journal of
Applied Logic 6(2), 172–191 (2008), selected papers from the 8th International
Workshop on Deontic Logic in Computer Science, 8th International Workshop on
Deontic Logic in Computer Science. doi:10.1016/j.jal.2007.06.007

5. Gaertner, D., Clark, K., Sergot, M.: Ballroom etiquette: a case study for norm-
governed multi-agent systems. In: Noriega, P., Vázquez-Salceda, J., Boella, G.,
Boissier, O., Dignum, V., Fornara, N., Matson, E. (eds.) Coordination, Organiza-
tions, Institutions, and Norms in Agent Systems II, Lecture Notes in Computer Sci-
ence, vol. 4386, pp. 212–226. Springer Berlin / Heidelberg (2007), doi:10.1007/978-
3-540-74459-7 14

6. Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in de-
feasible logic. In: Proceedings of the 10th international conference on Artificial
intelligence and law. pp. 25–34. ICAIL ’05, ACM, New York, NY, USA (2005),
doi:10.1145/1165485.1165490

7. Hjelmblom, M.: Deontic action-logic multi-agent systems in Prolog. Tech. Rep. 30,
University of Gävle, Division of Computer Science (2008), urn:nbn:se:hig:diva-1475

8. Hjelmblom, M.: State transitions and normative positions within normative sys-
tems. Tech. Rep. 37, University of Gävle, Department of Industrial Development,
IT and Land Management (2011), urn:nbn:se:hig:diva-10595

9. Hjelmblom, M.: Norm-regulated transition system situations. In: Filipe, J., Fred,
A. (eds.) Proceedings of the 5th International Conference on Agents and Artificial
Intelligence. pp. 109–117. ICAART 2013, SciTePress, Portugal (2013)

10. Hjelmblom, M., Odelstad, J.: jDALMAS: A Java/Prolog framework for deontic
action-logic multi-agent systems. In: H̊akansson, A., Nguyen, N., Hartung, R.,
Howlett, R., Jain, L. (eds.) Agent and Multi-Agent Systems: Technologies and
Applications, Lecture Notes in Computer Science, vol. 5559, pp. 110–119. Springer
Berlin / Heidelberg (2009), doi:10.1007/978-3-642-01665-3 12

11. Laaksolahti, J., Boman, M.: Anticipatory guidance of plot. CoRR cs.AI/0206041
(2002), doi:10.1007/978-3-540-45002-3 14

12. Lindahl, L.: Position and change: a study in law and logic. Synthese library, D.
Reidel Pub. Co. (1977), http://www.google.com/books?id= QwWhOK8aY0C

13. Lindahl, L., Odelstad, J.: Normative systems and their revision: An
algebraic approach. Artificial Intelligence and Law 11, 81–104 (2003),
doi:10.1023/B:ARTI.0000046005.10529.47

14. Lindahl, L., Odelstad, J.: Normative positions within an algebraic approach
to normative systems. Journal of Applied Logic 2(1), 63 – 91 (2004),
the Sixth International Workshop on Deontic Logic in Computer Science.
doi:10.1016/j.jal.2004.01.004

15. Lindahl, L., Odelstad, J.: Intermediaries and intervenients in normative systems.
Journal of Applied Logic 6(2), 229 – 250 (2008), selected papers from the 8th
International Workshop on Deontic Logic in Computer Science, 8th International
Workshop on Deontic Logic in Computer Science. doi:10.1016/j.jal.2007.06.010

16. Lindahl, L., Odelstad, J.: Stratification of normative systems with intermediaries.
Journal of Applied Logic 9(2), 113 – 136 (2011), special Issue: Selected and revised
papers from the Ninth International Conference on Deontic Logic in Computer Sci-
ence (DEON 2008), Ninth International Conference on Deontic Logic in Computer
Science. doi:10.1016/j.jal.2010.01.002

17. Lindahl, L., Odelstad, J.: The Theory of Joining-Systems, vol. 1, pp. 547–636. Col-
lege Publications, London (2012), to appear in Gabbay; Horthy; van der Meyden;
and van der Torre: Handbook of Normative systems



Instrumentalization of Norm-Regulated Transition System Situations 15

18. Makinson, D., van der Torre, L.: What is input/output logic? input/output
logic, constraints, permissions. In: Boella, G., van der Torre, L., Verha-
gen, H. (eds.) Normative Multi-agent Systems. No. 07122 in Dagstuhl Sem-
inar Proceedings, Internationales Begegnungs- und Forschungszentrum für In-
formatik (IBFI), Schloss Dagstuhl, Germany, Dagstuhl, Germany (2007),
http://drops.dagstuhl.de/opus/volltexte/2007/928

19. van der Meyden, R.: The dynamic logic of permission. Journal of Logic and Com-
putation 6(3), 465–479 (June 01 1996)

20. Meyer, J.J.C.: A different approach to deontic logic: deontic logic viewed as a
variant of dynamic logic. Notre Dame Journal of Formal Logic 29(1), 109–136
(1987), doi:10.1305/ndjfl/1093637776

21. Odelstad, J.: Many-Sorted Implicative Conceptual Systems. Ph.D. thesis, Royal
Institute of Technology, Computer and Systems Sciences, DSV (2008), qC 20100901

22. Odelstad, J., Boman, M.: Algebras for agent norm-regulation. An-
nals of Mathematics and Artificial Intelligence 42, 141–166 (2004),
doi:10.1023/B:AMAI.0000034525.49481.4a

23. Raskin, J.F., van der Torre, L.W., Tan, Y.H.: How to model normative be-
havior in petri nets. In: Proceedings of the 2nd Modelage Workshop on For-
mal Models of Agents. pp. 223–241 (1996), http://hdl.handle.net/2013/ULB-
DIPOT:oai:dipot.ulb.ac.be:2013/70564

24. Sergot, M.: Action and agency in norm-governed multi-agent systems. In: Artikis,
A., O’Hare, G., Stathis, K., Vouros, G. (eds.) Engineering Societies in the Agents
World VIII, Lecture Notes in Computer Science, vol. 4995, pp. 1–54. Springer
Berlin / Heidelberg (2008), doi:10.1007/978-3-540-87654-0 1

25. Solin, K.: Modal semirings with operators for knowledge representation. In: Filipe,
J., Fred, A. (eds.) Proceedings of the 5th International Conference on Agents and
Artificial Intelligence. pp. 197–202. ICAART 2013, SciTePress, Portugal (2013)

26. Vázquez-Salceda, J., Aldewereld, H., Dignum, F.: Implementing norms in multia-
gent systems. In: Lindemann, G., Denzinger, J., Timm, I., Unland, R. (eds.) Mul-
tiagent System Technologies, Lecture Notes in Computer Science, vol. 3187, pp.
313–327. Springer Berlin / Heidelberg (2004), doi:10.1007/978-3-540-30082-3 23


